The JavaScript code example demonstrates how to find a zero of a function using a fixed-point algorithm.
<!DOCTYPE html>
<html>
<head>
<title>XoaX.net's Javascript</title>
<style>
table {
background-color:white;
}
</style>
</head>
<body>
<script type="text/javascript" src="FindingAZeroWithAFixedPoint.js"></script>
</body>
</html>FindZeroAtPi();
function FindZeroAtPi() {
let dX0 = 0.0;
let dX1 = 4.0;
document.writeln('<table cellspacing="5" cellpadding="5" border="3">');
document.writeln('<thead><tr><th>X0</th><th>X1</th></tr></thead>');
while (Math.abs(dX0 - dX1) > 1.0e-15) {
dX0 = dX1;
dX1 = FixedPoint(dX1);
document.writeln('<tr><td>'+dX0+'</td><td>'+dX1+'</td></tr>');
}
document.writeln('</table>');
}
// Given y = sin(x)
// To find sin(x) = 0, add x to both sides to get x = sin(x) + x.
// Now, Pi is a fixed point of y = sin(x) + x
// Note that y'(pi) = 0 < 1. So, the algorithm converges ... rapidly.
// Let x(n) = sin(x(n-1)) + x(n-1)
function FixedPoint(dX) {
return Math.sin(dX) + dX;
}
© 20072026 XoaX.net LLC. All rights reserved.