This MathML example demontrates how to complete the square to find the minimum or maximum point of a parabola.
<!doctype html>
<html>
<head>
<title>XoaX.net's MathML: Completing the Square</title>
</head>
<body>
<p>The minimum or maximum value of a parabola can be found by <b>completing the square</b>, as shown. The squared
term is greater than or equal to zero. So, it is minimized when it is zero, at the double root. The size of the
multiplier <b><i>a</i></b> determines whether it is a minimum or maximum. Finally, the minimum or maximum is
given by the value of the last term.</p>
<math display="block">
<mtable>
<mtr>
<mtd><mi>y</mi></mtd>
<mtd><mo>=</mo></mtd>
<mtd style="text-align: left;"><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup>
<mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></mtd>
</mtr>
<mtr>
<mtd></mtd>
<mtd><mo>=</mo></mtd>
<mtd style="text-align: left;"><mi>a</mi><mo>(</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo>
<mfrac><mi>b</mi><mi>a</mi></mfrac><mi>x</mi><mo>)</mo><mo>+</mo><mi>c</mi></mtd>
</mtr>
<mtr>
<mtd></mtd>
<mtd><mo>=</mo></mtd>
<mtd style="text-align: left;"><mi>a</mi><mo>(</mo><msup><mi>x</mi><mn>2</mn></msup>
<mo>+</mo>
<mfrac><mi>b</mi><mi>a</mi></mfrac><mi>x</mi>
<mo>+</mo>
<msup><mrow><mo>(</mo><mfrac><mi>b</mi><mrow><mn>2</mn><mi>a</mi></mrow></mfrac><mo>)</mo></mrow><mn>2</mn></msup>
<mo>-</mo>
<msup><mrow><mo>(</mo><mfrac><mi>b</mi><mrow><mn>2</mn><mi>a</mi></mrow></mfrac><mo>)</mo></mrow><mn>2</mn></msup>
<mo>)</mo><mo>+</mo><mi>c</mi></mtd>
</mtr>
<mtr>
<mtd></mtd>
<mtd><mo>=</mo></mtd>
<mtd style="text-align: left;"><mi>a</mi><mo>(</mo>
<msup><mrow><mo>(</mo><mi>x</mi><mo>+</mo>
<mfrac><mi>b</mi><mrow><mn>2</mn><mi>a</mi></mrow></mfrac>
<mo>)</mo></mrow><mn>2</mn></msup>
<mo>-</mo>
<msup><mrow><mo>(</mo><mfrac><mi>b</mi><mrow><mn>2</mn><mi>a</mi></mrow></mfrac><mo>)</mo></mrow><mn>2</mn></msup>
<mo>)</mo><mo>+</mo><mi>c</mi></mtd>
</mtr>
<mtr>
<mtd></mtd>
<mtd><mo>=</mo></mtd>
<mtd style="text-align: left;"><mi>a</mi>
<msup><mrow><mo>(</mo><mi>x</mi><mo>+</mo>
<mfrac><mi>b</mi><mrow><mn>2</mn><mi>a</mi></mrow></mfrac>
<mo>)</mo></mrow><mn>2</mn></msup>
<mo>-</mo>
<mfrac><msup><mi>b</mi><mn>2</mn></msup><mrow><mn>4</mn><mi>a</mi></mrow></mfrac>
<mo>+</mo><mi>c</mi></mtd>
</mtr>
<mtr>
<mtd></mtd>
<mtd><mo>=</mo></mtd>
<mtd style="text-align: left;"><mi>a</mi>
<msup><mrow><mo>(</mo><mi>x</mi><mo>+</mo>
<mfrac><mi>b</mi><mrow><mn>2</mn><mi>a</mi></mrow></mfrac>
<mo>)</mo></mrow><mn>2</mn></msup>
<mo>+</mo>
<mfrac>
<mrow><mn>4</mn><mi>a</mi><mi>c</mi><mo>-</mo><msup><mi>b</mi><mn>2</mn></msup></mrow>
<mrow><mn>4</mn><mi>a</mi></mrow>
</mfrac>
</mtd>
</mtr>
</mtable>
</math>
<p>To make the situation clearer, we can write
<math>
<mi>y</mi><mo>=</mo><mi>a</mi><msup><mi>z</mi><mn>2</mn></msup><mo>+</mo><mi>d</mi>
</math>,
where
<math>
<mi>z</mi><mo>=</mo><mi>x</mi><mo>+</mo><mfrac><mi>b</mi><mrow><mn>2</mn><mi>a</mi></mrow></mfrac>
</math>
and
<math>
<mi>d</mi><mo>=</mo>
<mfrac>
<mrow><mn>4</mn><mi>a</mi><mi>c</mi><mo>-</mo><msup><mi>b</mi><mn>2</mn></msup></mrow>
<mrow><mn>4</mn><mi>a</mi></mrow>
</mfrac>
</math>.
</p>
</body>
</html>© 20072025 XoaX.net LLC. All rights reserved.